

Sistemas de recuperación del calor

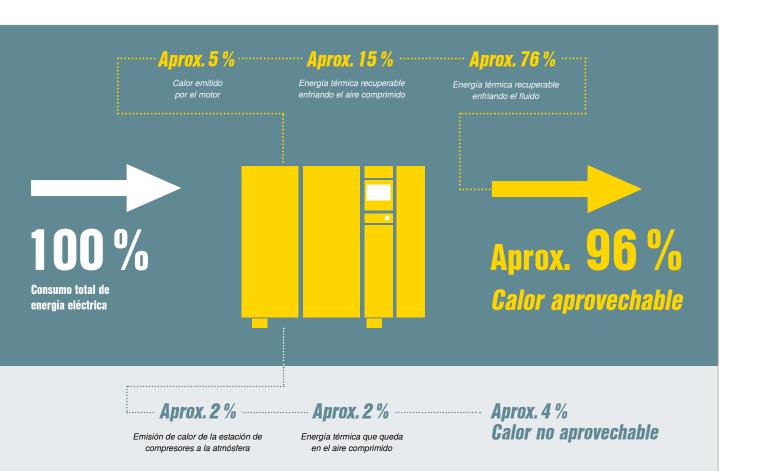
Recuperación del calor para aplicaciones de aire y agua

¿Por qué optar por la recuperación del calor?

En realidad, la pregunta debería ser: ¿y por qué no? Al fin y al cabo, los compresores de tornillo y los sopladores convierten en calor casi el 100 % de la energía eléctrica que consumen.

De esta energía es posible recuperar hasta el 96 %, por ejemplo, para calefacción. Así, se reduce el consumo energético básico y se mejora notablemente el balance total de gasto de energía.

Calor en el compresor


Los compresores de tornillo, los Boosters y los sopladores convierten en calor casi el 100 % de la energía eléctrica que consumen. El diagrama de flujo de calor (abajo) muestra cómo se distribuye la energía en el compresor y hasta qué punto puede recuperarse.

Un 96 % queda disponible para su aprovechamiento, el 2 % se queda en el aire comprimido y el 2 % restante se irradia a la atmósfera. Entonces, ¿de dónde viene la energía que se aprovecha al utilizar el aire comprimido?

La respuesta es sencilla, y al mismo tiempo quizá sorprendente: el compresor convierte en calor la energía eléctrica que se consume durante la compresión. Al mismo tiempo, el compresor carga el aire aspirado con un potencial de energía. Esta energía corresponde aproximadamente al 25 % de la energía eléctrica absorbida por el compresor. Esa energía no se aprovecha hasta que el aire comprimido llega al punto de consumo y el aire se relaja, robando al hacerlo energía térmica del aire que lo rodea. Depen-

diendo de las pérdidas de presión y de la cota de fugas de cada sistema neumático, la cantidad de energía aprovechable en los puntos de consumo puede variar.

Protege el medio ambiente y ahorra dinero

Sistemas con intercambiador de calor	Tamaño del compresor						
de placas	pequeño	mediano	grande				
Modelo de compresor	SM 15	BSD 83	FSD 475				
Potencia nominal del motor	9 kW	45 kW	250 kW				
Potencial de ahorro anual con fuel oil	842 USD	5422 USD	27 313 USD				
para calefacción	3826 kg CO ₂	24 644 kg CO ₂	124 138 kg CO ₂				

Sistemas de recuperación del calor - Aire caliente

Reducción del consumo energético básico necesario para calefacción

Los compresores de tornillo, Boosters y sopladores modernos son ideales para conseguir una buena recuperación del calor.

Por ejemplo, el uso directo del calor derivado por medio de un sistema de canales de aire encierra un enorme potencial de ahorro, de hasta el 96 % de la energía invertida.

Este gran ahorro es posible tanto si se trata de compresores con enfriamiento por inyección de aceite como de compresores de tornillo seco, Boosters o sopladores.

Calefacción por agua caliente

Canalizar el aire de enfriamiento calentado por los compresores es un sistema muy eficaz para calentar cuartos. De esta manera se puede aprovechar hasta el 96 % de la potencia absorbida por un compresor para calefacción o procesos.

Calefacción para cuartos anexos

Si el objetivo es aprovechar el calor para un sistema de calefacción por aire caliente, el mismo procedente del enfriamiento se conduce por medio de canales hasta donde sea necesario. Este método permite calentar almacenes o talleres con el calor derivado por los compresores.

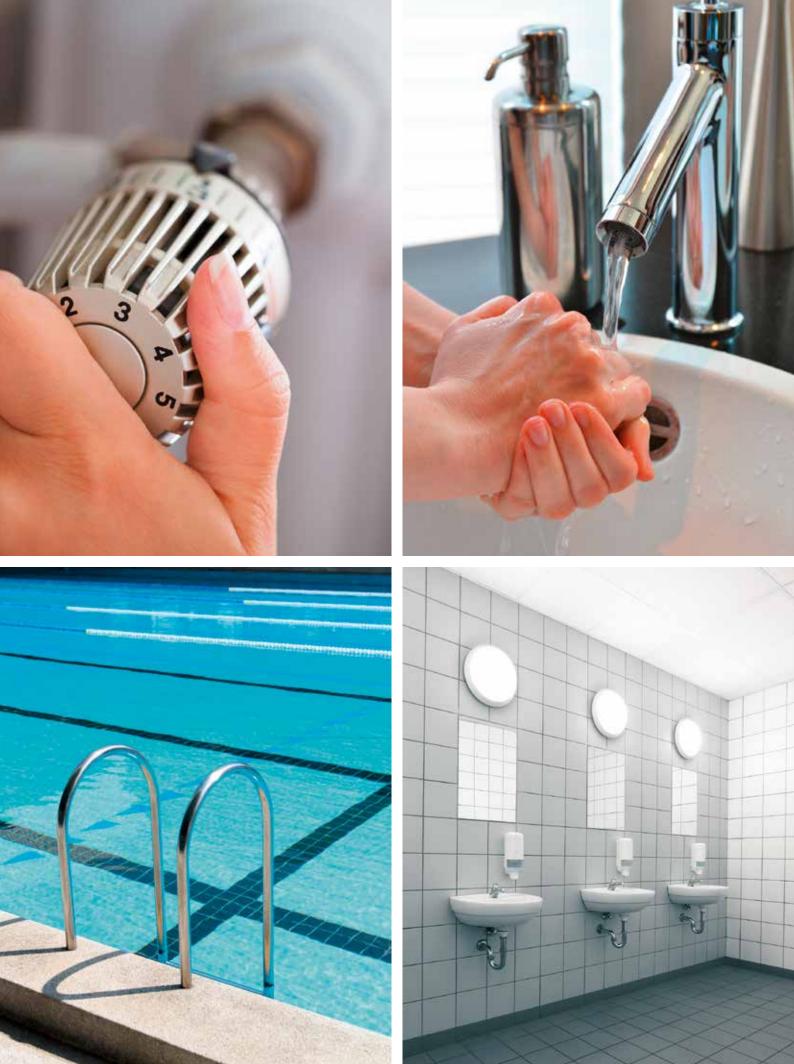
Reducción al mínimo del consumo energético básico para el calentamiento del agua que se necesita para procesos, calefacción y consumo

Con los sistemas de intercambiadores de calor es posible aprovechar el calor derivado por los compresores para calentar agua corriente y para calefacción hasta +70°C o, en caso de necesidad, incluso hasta +85°C.

Los sistemas de intercambiadores de calor PTG están diseñados para el calentamiento de agua para sistemas de calefacción y de agua corriente. Este es el uso estándar del calor recuperado.

Los intercambiadores de calor de seguridad SWT son recomendables en los casos en los que no se instala un circuito de agua intermedio y las exigencias de calidad del agua a calentar son altas, como sucede con el agua para limpieza en la industria de la alimentación.

Con los sistemas de intercambiadores de calor es posible calentar el agua hasta +70°C con el calor que se desprende de los compresores. Son posibles temperaturas más altas a pedido.


Suministro de calor al sistema de calefacción

Es posible recuperar hasta un 76 % de la potencia suministrada a los compresores a través de los sistemas de calefacción y agua caliente existentes. De este modo, se reduce notablemente el consumo energético básico necesario para calefacción y agua caliente.

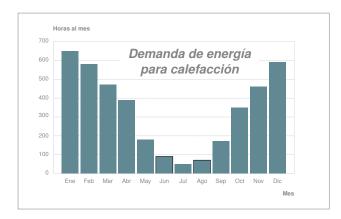
Intercambiadores de calor de placas PTG

Los intercambiadores de placas de acero inoxidable de gran calidad son la elección correcta en aquellos casos en los que se pretenda aprovechar el calor de los compresores para calentar agua para calefacción o consumo, o bien usar el calor para procesos.

Equipamiento para compresores de tornillo

Recuperación del calor por medio del aire caliente

Todos los compresores de tornillo KAESER están preparados para la conexión de canales para la salida de aire. El montaje de dichos canales correrá a cargo del cliente. El aire de enfriamiento caliente permite calentar cuartos anexos. Posibles campos de aplicación: procesos de secado, calefacción de salas y edificios, cortinas de aire caliente, precalentamiento de aire comburente.


Sistemas de intercambiadores PTG

Los compresores de tornillo a partir de la serie SM (desde 5,5 kW) pueden equiparse con intercambiadores de calor PTG. Dependiendo de las dimensiones del compresor, el sistema PTG se instalará en su interior o en el exterior del mismo. Posibles campos de aplicación: alimentación de sistemas de calefacción central, lavanderías, galvanización, calor para todo tipo de procesos que lo requieran. Con intercambiadores de calor de seguridad: agua de limpieza en la industria de los alimentos, calefacción para piscinas, agua caliente para duchas y baños.

Intercambiadores de calor de tubos

Si la calidad del agua de enfriamiento no da la talla (por ejemplo, porque contenga demasiada cal, suciedad o sal, como el agua marina), están disponibles los intercambiadores de calor de tubos especiales. Nuestros expertos en aire comprimido lo asesorarán sobre cuál es el intercambiador más conveniente para su caso particular.

El calor no se necesita solo en invierno

Es evidente que en invierno hay que usar la calefacción. Pero es posible que en primavera y en otoño también la necesitemos, por ejemplo, para la producción de agua caliente. El tiempo total de uso del sistema de calefacción se eleva entonces a unas 4000 h al año.



Imagen: Esquema de la recuperación del calor; aplicaciones para agua potable posibles solamente con intercambiadores de calor de seguridad (SWT)

Imagen: Interior de un compresor: sistema con intercambiador de calor de placas, válvula térmica y conexión

Especificaciones técnicas de...

Aire caliente

Modelo	A presión Potencia Máximo rendimiento máx. nominal térmico disponible		Vol. de aire caliente	Calentamiento del aire de	Potencial de ahorro de fuel oil			el oil	Potencial de ahorro de gas					
	max.	motor	terriico c	nsportible	aprovechable	enfriamiento	Fuel oil para calefacción	CO ₂		rro costos alefacción	Gas natural	CO ₂		orro costos calefacciór
	bar	kW	kW	MJ/h *)	m³/h	K (aprox.)	litros	kg	U	SD/año	m³	kg	U	ISD/año
SX 3 SX 4 SX 6 SX 8	8	2,2 3 4 5,5	2,7 3,4 4,4 6,0	10 12 16 22	1000 1000 1000 1300	8 10 13 14	456 575 744 1014	1244 1568 2029 2765	500 h/a	274,- 345,- 446,- 608,-	378 476 616 840	756 952 1232 1680	500 h/a	284, 357, 462, 630,
SM 10 SM 13 SM 16	8	5,5 7,5 9	6,8 9,1 11,1	25 33 40	2100	10 13 16	1149 1538 1876	3133 4194 5116	Potencial de ahorro en 1500 h/a	689,- 923,- 1126,-	952 1275 1555	1904 2550 3110	Potencial de ahorro en 1500 h/a	714, 956, 1166,
SK 22 SK 25	8	11 15	13,2 16,5	48 59	2500 3000	16 17	2231 2789	6084 7606	encial de	1339,- 1673,-	1849 2311	3698 4622	encial de	1387, 1733,
ASK 28 ASK 34 ASK 40	8	15 18,5 22	18,4 22,8 26,8	66 82 96	4000 4000 5000	14 17 16	3110 3854 4530	8481 10510 12353	Pot	1866,- 2312,- 2718,-	2577 3193 3754	5154 6386 7508	Pote	1933, 2395, 2816,
ASD 35 ASD 40 ASD 50 ASD 60	8,5	18,5 22 25 30	20,2 23,8 28,3 34,9	73 86 102 126	3800 3800 4500 5400	16 19 19 19	4552 5363 6378 7865	12413 14625 17393 21448		2731,- 3218,- 3827,- 4719,-	3772 4444 5285 6517	7544 8888 10570 13034		2829, 3333, 3964, 4888,
BSD 65 BSD 75 BSD 83	8,5	30 37 45	35,2 43,4 52,0	127 156 187	6500 8000 8000	16 16 20	7932 9780 11718	21631 26670 31955		4759,- 5868,- 7031,-	6573 8105 9711	13146 16210 19422		4930, 6079, 7283,
CSD 85 CSD 105 CSD 125	8,5	45 55 75	50 62 75	179 223 270	9400 9400 10700	16 20 21	11223 13972 16902	30605 38102 46092	h/a	6734,- 8383,- 10 141,-	9300 11578 14006	18600 23156 28012	h/a	6975, 8684, 10 505,
CSDX 140 CSDX 165	8,5	75 90	84 101	302 364	11000 13000	23 23	18930 22761	51622 62069	en 2000 h	11 358,- 13 657,-	15686 18861	31372 37722	en 2000 h	11 765, 14 146,
DSD 145 DSD 175 DSD 205 DSD 240	9 8,5 8,5 8,5	75 90 110 132	82 96 120 145	295 346 432 522	11000 13000 17000 20000	22 22 21 22	18479 21634 27043 32676	50392 58996 73746 89107	otencial de ahorro en 2000	11 087,- 12 980,- 16 266,- 19 606,-	15313 17927 22409 27077	30626 35854 44818 54154	Potencial de ahorro	11 485, 13 445, 16 807, 20 308,
DSDX 245 DSDX 305	8,5	132 160	143 176	515 634	21000	20 25	32226 39662	87880 108158	Poten	19 336,- 23 797,-	26704 32866	53408 65732	Poten	20 028, 24 650,
ESD 375 ESD 445	8,5	200 250	221 254	796 914	30000 34000	22 22	49803 57240	135813 156093		29 882,- 34 344,-	41270 47432	82540 94864		30 953, 35 574,
FSD 475 FSD 575	8,5	250 315	274 333	986 1199	40000	21 25	61747 75043	168384 204642		37 048,- 45 026,-	51167 62185	102234 124370		38 375, 46 639,
HSD 662 HSD 722 HSD 782 HSD 842	8,5	360 400 450 500	21 23 25 26	74 82 88 94	10000	6 7 7 8	4642 5116 5521 5904	12659 13951 15056 16100		2785,- 3070,- 3313,- 3542,-	3847 4239 4575 4893	7694 8478 9150 9786		2885, 3179, 3431, 3670,

Ejemplo de cálculo del ahorro para un ASD 35

Para fuel oil de calefacción	
Máximo rendimiento térmico disponible:	20,2 kW
Poder térmico por litro de fuel oil para calefacción:	9,861 kWh/l
Grado de rendimiento de la calefacción de fuel oil:	0,9
Precio por litro de fuel oil para calefacción:	0,60 USD/I
Ahorro de costos:	20,2 kW x 2000 h/a x 0.60 USD/l = 2731 USD al año
Anono de costos.	0,9 x 9,861 kWh/l

Para gas natural				
Máximo rendimiento térmico disponible:	20,2 kW			
Poder térmico por m³ de gas:	10,2 kWh/m³			
Grado de rendimiento de la calefacción por gas:	1,05			
Precio por m³ de gas:	0,75 USD/m ³			
Ahorro de costos:	20,2 kW x 2000 h/a	x 0,75 USD/	= 2829 USD al año	
Allorro de costos.	1,05 x 10,2 kWh/m ³	m³	= 2029 030 81 8110	

... los compresores de tornillo

Agua caliente

Modelo	A presión	Potencia		o rendi-	Agua o		Emplaza-	Potencia	al de ahorre	o de f	uel oil	Poteno	cial de ahoi	ro de	gas
	máx.	nominal motor	miento térmico disponible		Calentamiento a 70 °C		miento del sistema PTG	Fuel oil para calefacción	CO ₂		rro costos alefacción	Gas natural	CO ₂		rro costos alefacción
	bar	kW	kW	MJ/h *)	(ΔT 25 K) m ³ /h	(ΔT 55 K) m ³ /h	int./ext.	litros	kg	U	SD/año	m³	kg	U	SD/año
SM 10 SM 13 SM 16	8	5,5 7,5 9	4,8 6,6 8,1	17 24 29	0,16 0,21 0,29	0,07 0,10 0,13	Externo	811 1116 1369	2212 3043 3733	Potencial de ahorro en 1500 h/a	487,- 670,- 821,-	672 924 1134	1344 1848 2268	Potencial de ahorro en 1500 h/a	504,- 693,- 851,-
SK 22 SK 25	8	11 15	9,4 12,0	34 43	0,32 0,41	0,15 0,19	Externo	1589 2028	4333 5530	de ahorro	953,- 1217,-	1317 1681	2634 3362	de ahorro	988,- 1261,-
ASK 28 ASK 34 ASK 40	8	15 18,5 22	13,6 16,9 19,8	49 61 71	0,47 0,58 0,68	0,21 0,26 0,31	Interno	2299 2856 3347	6269 7788 9127	Potencial	1379,- 1714,- 2008,-	1905 2367 2773	3810 4734 5546	Potencial	1429,- 1775,- 2080,-
ASD 35 ASD 40 ASD 50 ASD 60	8,5	18,5 22 25 30	15,2 18,1 21,6 26,6	55 65 78 96	0,52 0,62 0,74 0,92	0,24 0,28 0,34 0,42	Interno	3425 4079 4868 5994	9340 11123 13275 16346		2055,- 2447,- 2921,- 3596,-	2838 3380 4034 4967	5676 6760 8068 9934		2129,- 2535,- 3026,- 3725,-
BSD 65 BSD 75 BSD 83	8,5	30 37 45	27,1 33,5 40,1	98 121 144	0,93 1,15 1,38	0,42 0,52 0,63	Interno	6107 7549 9037	16654 20586 24644		3664,- 4529,- 5422,-	5061 6256 7488	10122 12512 14976		3796,- 4692,- 5616,-
CSD 85 CSD 105 CSD 125	8,5	45 55 75	38,6 48,4 59,0	139 174 212	1,33 1,67 2,03	0,60 0,76 0,92	Interno	8699 10907 13296	23722 29743 36258	6	5219,- 6544,- 7978,-	7208 9038 11018	14416 18076 22036		5406,- 6779,- 8264,-
CSDX 140 CSDX 165	8,5	75 90	66 80	238 288	2,30 2,80	1,03 1,25	Interno	14873 18028	40559 49162	en 2000 h/a	8924,- 10 817,-	12325 14939	24650 29878	en 2000 h/a	9244,- 11 204,-
DSD 145 DSD 175 DSD 205 DSD 240	9 8,5 8,5 8,5	75 90 110 132	61 71 88 107	220 256 317 385	2,10 2,40 3,00 3,70	0,96 1,11 1,38 1,68	Interno	13747 16000 19831 24113	37488 43632 54079 65756	de ahorro	8248,- 9600,- 11 899,- 14 468,-	11391 13259 16433 19981	22782 26518 32866 39962	de ahorro	8543,- 9944,- 12 325,- 14 986,-
DSDX 245 DSDX 305	8,5	132 160	105 130	378 468	3,60 4,50	1,64 2,04	Interno	23662 29296	64526 79890	Potencial	14 197,- 17 578,-	19608 24276	39216 48552	Potencial	14 706,- 18 207,-
ESD 375 ESD 445	8,5	200 250	162 187	583 673	5,6 6,4	2,54 2,93	Interno	36507 42141	99555 114919		21 904,- 25 285,-	30252 34921	60504 69842		22 689,- 26 191,-
FSD 475 FSD 575	8,5	250 315	202 246	727 886	7,0 8,5	3,16 3,85	Interno	45522 55437	124138 151177		27 313,- 33 262,-	37722 45938	75444 91876		28 292,- 34 454,-
HSD 662 HSD 722 HSD 782 HSD 842	8,5	360 400 450 500	291 323 348 374	1048 1163 1253 1346	10,0 11,1 12,0 12,9	4,56 5,06 5,45 5,86	Interno	65578 72790 78423 84283	178831 198498 213860 229840		39 347,- 43 674,- 47 054,- 50 570,-	54342 60317 64986 69841	108684 120634 129972 139682		40 757,- 45 238,- 48 740,- 52 381,-

[&]quot;) 1 MJ/h = 1 kW x 3,6

Ejemplo de cálculo del ahorro para un ASD 35

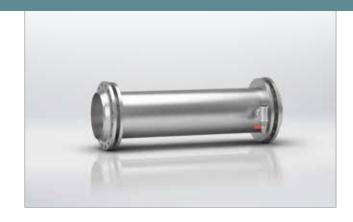
Para fuel oil de calefacción	
Máximo rendimiento térmico disponible:	15,2 kW
Poder térmico por litro de fuel oil para calefacción:	9,861 kWh/l
Grado de rendimiento de la calefacción de fuel oil:	0,9
Precio por litro de fuel oil para calefacción:	0,60 USD/I
Ahorro de costos:	15,2 kW x 2000 h/a
Anorro de costos:	0,9 x 9,861 kWh/l x 0,60 USD/l = 2055 USD al año

Para gas natural			
Máximo rendimiento térmico disponible:	15,2 kW		
Poder térmico por m³ de gas:	10,2 kWh/m³		
Grado de rendimiento de la calefacción por gas:	1,05		
Precio por m³ de gas:	0,75 USD/m ³		
	15,2 kW x 2000 h/a	x 0,75 USD/	0400 HOD -1 - 7 -
Ahorro de costos:	1,05 x 10,2 kWh/m ³	m ³	= 2129 USD al año

Sistemas de recuperación del calor para...

Aire caliente

En el caso del Air Cooled Aftercooler (ACA), se trata de un intercambiador de calor aire/aire. El aire de procesos se enfría en una corriente cruzada con aire atmosférico que se calienta al contacto con el intercambiador de calor. En lo que se refiere a suministros, solamente necesita una conexión eléctrica para el ventilador. El aire para procesos que entra en el enfriador puede enfriarse, por ejemplo, de +150°C a +30°C si la temperatura ambiental es de +20°C. En el transporte neumático de materiales a granel que sean sensibles al calor, por ejemplo, contar con un ACA es una ventaja. Si se trata de calentar una sala de producción en invierno, el ACA también es capaz de hacerlo. La corriente de aire que sale del enfriado contiene hasta un 75 % de la potencia eléctrica absorbida por el soplador. Para que el aprovechamiento de la energía sea máximo, o lo que es lo mismo, para que el efecto refrigerante sea lo más eficiente posible, la pérdida de presión no debe superar los 35 mbar. El funcionamiento se monitoriza por medio de un termostato integrado que registra la temperatura de salida del aire de procesos y conmuta un contacto libre de potencial si se alcanza un punto de activación ajustable.



Ejemplos de uso

- Enfriamiento del aire de procesos de sopladores, por ejemplo, para transporte de materiales a granel
- Calefacción de salas de producción

Agua caliente

Los postenfriadores enfriados por agua, los WRN, son intercambiadores de calor de tubos. El aire de procesos atraviesa unos tubos de enfriamiento en torno a los cuales se hace circular agua. El agua sirve en tal caso como medio refrigerante o portador del calor. Este tipo de intercambiadores se diseñan individualmente para cada proyecto para que la caída o subida de temperatura del aire de procesos o del agua se ajuste perfectamente a las necesidades. Los tubos de enfriamiento pueden tener distintas formas geométricas para mantener al mínimo la caída de presión, que significa un mayor consumo del soplador, y al mismo tiempo conseguir la transferencia térmica máxima posible. Y dependiendo de la calidad del agua, los tubos pueden estar fabricados de materiales diferentes. La camisa de enfriamiento está esmaltada. La temperatura de retorno del agua que puede alcanzarse estará como máximo aprox. a 5 K por debajo de la de entrada del aire de procesos en el intercambiador de calor.

Ejemplos de uso

- Conexión a circuitos de calefacción para subir la temperatura de retorno
- Conexión a circuitos de bombas de calor
- Calefacción de piso radiante
- Secado de lodos

... sopladores

Especificaciones técnicas de los sistemas de recuperación del calor...

Aire caliente

Modelo	Caudal máx. del aire de procesos	Pérdida de presión máx.	Caudal máx. del ventilador *)	Corriente del ventilador (400 V)	Potencia del ventilador ')	Peso total	Dimensiones an x prof x al	Sección nom. conexión
	Nm³/min	mbar	m³/h	A	W	kg	mm	DN
ACA 53	5	15	1700	0,24	110	58	980 x 650 x 610	50
ACA 88	7	25	1700	0,24	110	58	980 x 650 x 610	65
ACA 130	12	25	3100	0,43	210	97	980 x 650 x 610	80
ACA 165	14	30	3100	0,43	210	97	980 x 650 x 610	100
ACA 235	22	30	6200	0,43 (2x)	210	193	1900 x 850 x 1200	100
ACA 350	30	35	6200	0,43 (2x)	210	199	1900 x 850 x 1280	150

^{*)} A presión máxima.

Ejemplo de cálculo del ahorro para un ACA 350 para calefacción de salas de producción

Soplador (37 kW)							
Caudal:	30 m³/min						
Presión diferencial:	600 mbar						
Temperatura de entrada:	0°C						
Temperatura de salida:	+52 °C						

ACA 350	
Disipación de calor:	25 kW
Calentamiento del aire:	2200 m³/h de aire de 0 a +35 °C
Caída de presión aire de procesos:	35 mbar = 2,2 kW

... para sopladores

Agua caliente

Modelo	Anchura nominal	V máx. aire	V máx. H₂0	Medidas d	e empalme	Dimer	Peso	
		Nm³/min	m³/h	Aire	Agua	Ø camisa	Longitud *)	kg
WRN 50 liso	125	15	1	DN 125, PN 16	1 ¼	168	1410	71
WRN 90 liso	200	30	1,5	DN 200, PN 16	1 1/4	245	1430	145
WRN 130 liso	250	42	2	DN 250, PN 10	1 ½	273	1441	225
WRN 170 liso	300	57	2,5	DN 300, PN 10	2	324	1441	280
WRN 250 liso	350	75	3	DN 350, PN 10	DN 65, PN 16	375	1641	400
WRN 350 liso	450	108	3,5	DN 450, PN 10	DN 80, PN 16	450	1649	590
WRN 450 liso	500	145	4,5	DN 500, PN 10	DN 100, PN 16	519	1655	690

^{*)} Con contrabrida de soldar (incluida en suministro)

Ejemplo de cálculo del ahorro para un WRN 170 para calefacción auxiliar

Soplador (37 kW)							
Caudal:	30 m³/min						
Presión diferencial:	600 mbar						
Temperatura de entrada:	0°C						
Temperatura de salida:	+52 °C						

WRN 170	
Disipación de calor:	14 kW
Calentamiento del aire:	600 l/h de agua de +25 a +45 °C
Caída de presión aire de procesos:	20 mbar (aprox. 1,2 kW más en soplador) = 2 kW

Siempre cerca de usted

KAESER KOMPRESSOREN está presente en todo el mundo como uno de los fabricantes de compresores, sopladores y sistemas de aire comprimido más importantes.

Nuestras subsidiarias y nuestros socios brindan al usuario los sistemas de aire comprimido y soplado más modernos, eficientes y confiables en más de 140 países.

Especialistas e ingenieros con experiencia le brindan un asesoramiento completo y soluciones individuales y eficientes para todos los campos de aplicación del aire comprimido y soplado. La red informática global del grupo internacional de empresas KAESER permite a todos los clientes el acceso a sus conocimientos.

La red global de ventas y asistencia técnica, con personal altamente calificado, garantiza la disponibilidad de todos los productos y servicios KAESER en cualquier parte.

KAESER COMPRESORES DE CHILE LTDA.

Salar de Atacama 1381, Parque Industrial ENEA, 9030919 Pudahuel – Santiago – Chile

Teléfono: (56) 2 2599-9200 - Fax: (56) 2 2599-9252 E-mail: info.chile@kaeser.com - www.kaeser.cl

Distribuidor autorizado por KAESER HANSA Ltda. con sucursales en:

La Paz: Calle Yanacocha esq. Mercado No. 1004 – Tel.: (2) 214 9800 – Fax: (2) 216 7961 El Alto: Av. 6 de Marzo Frente al Regimiento Ingavi s/n Tel.: (2) 281 9770 – 281 9466 – 281 8205

Santa Cruz: Av. Cristo Redentor No. 470 - Tel.: (3) 342 4000 - Fax: (3) 342 3233

Sucursal: Av. Cañoto esq. Buenos Aires - Cel.: 721 33428

Cochabamba: Av. Blanco Galindo - Km. 5 - Tel.: (4) 444 2153 - Fax: (4) 424 0260

Atención al Cliente: 800 10 0014 - Web: www.hansaindustria.com.bo

Facebook: HANSA Ltda. Div. Industria & Construcción

WhatsApp: (591) 682 74112